IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v90y2003i3p629-641.html
   My bibliography  Save this article

A Bayesian justification of Cox's partial likelihood

Author

Listed:
  • Debajyoti Sinha

Abstract

In this paper, we establish both naive and formal Bayesian justifications of Cox's (1975) partial likelihood and its various modifications. We extend the original work of Kalbfieisch (1978), who showed that the partial likelihood is a limiting marginal posterior under noninformative priors for baseline hazards. We extend the result to scenarios with time-dependent covariates and time-varying regression parameters. We establish results for continuous time as well as grouped survival data. In addition, we present a Bayesian justification of a modified partial likelihood for handling ties. We also present tools for simplification of the Gibbs sampling algorithm for implementing partial likelihood based Bayesian inference in various practical applications. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • Debajyoti Sinha, 2003. "A Bayesian justification of Cox's partial likelihood," Biometrika, Biometrika Trust, vol. 90(3), pages 629-641, September.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:3:p:629-641
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steffen Ventz & Rahul Mazumder & Lorenzo Trippa, 2022. "Integration of survival data from multiple studies," Biometrics, The International Biometric Society, vol. 78(4), pages 1365-1376, December.
    2. Hyunsoon Cho & Joseph G. Ibrahim & Debajyoti Sinha & Hongtu Zhu, 2009. "Bayesian Case Influence Diagnostics for Survival Models," Biometrics, The International Biometric Society, vol. 65(1), pages 116-124, March.
    3. Gwangsu Kim & Yongdai Kim & Taeryon Choi, 2017. "Bayesian Analysis of the Proportional Hazards Model with Time-Varying Coefficients," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 524-544, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:3:p:629-641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.