IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v90y2003i3p517-531.html
   My bibliography  Save this article

Conditioning to reduce the sensitivity of general estimating functions to nuisance parameters

Author

Listed:
  • John J. Hanfelt

Abstract

A conditional method is presented that renders an estimating function insensitive to nuisance parameters. The approach is a generalisation of the conditional score method to a general estimating function context and does not require complete specification of the probability model. We exploit the informal relationship between general estimating functions and score functions to derive simple generalisations of sufficient and partially ancillary statistics, referred to as G-sufficient and G-ancillary statistics, respectively. These two types of statistic are defined in a manner that does not require complete knowledge of the probability model and thus are more suitable for use with estimating functions. If we condition on a G-sufficient statistic for the nuisance parameters, the resulting conditional estimating function is insensitive to nuisance parameters and in particular achieves the plug-in unbiasedness property. Furthermore, if the conditioning argument is also G-ancillary for the parameters of interest, then the conditional estimating function possesses an attractive optimality property. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • John J. Hanfelt, 2003. "Conditioning to reduce the sensitivity of general estimating functions to nuisance parameters," Biometrika, Biometrika Trust, vol. 90(3), pages 517-531, September.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:3:p:517-531
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hanfelt, John J. & Li, Ruosha & Pan, Yi & Payment, Pierre, 2011. "Robust inference for sparse cluster-correlated count data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 182-192, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:3:p:517-531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.