IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v90y2003i2p269-287.html
   My bibliography  Save this article

Nonparametric analysis of covariance for censored data

Author

Listed:
  • Yunling Du

Abstract

The fully nonparametric model for nonlinear analysis of covariance, proposed in Akritas et al. (2000), is considered in the context of censored observations. Under this model, the distributions for each factor level combination and covariate value are not restricted to comply to any parametric or semiparametric model. The data can be continuous or ordinal categorical. The possibility of different shapes of covariate effect in different factor level combinations is also allowed. This generality is useful whenever modelling assumptions such as additive risks, proportional hazards or proportional odds appear suspect. Test statistics are obtained for the nonparametric hypotheses of no main effect and of no interaction effect which adjusts for the presence of a covariate. They are quadratic forms based on averages over the covariate values of Beran estimators of the conditional distribution of the survival time given each covariate value. The derivation of the asymptotic &khgr;-super-2 distribution of the test statistics uses a recently-obtained asymptotic representation of the Beran estimator as average of independent random variables. A real-data set is analysed and results of simulation studies are reported. Copyright Biometrika Trust 2003, Oxford University Press.

Suggested Citation

  • Yunling Du, 2003. "Nonparametric analysis of covariance for censored data," Biometrika, Biometrika Trust, vol. 90(2), pages 269-287, June.
  • Handle: RePEc:oup:biomet:v:90:y:2003:i:2:p:269-287
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Withers & Saralees Nadarajah, 2014. "Non-parametric confidence intervals for covariance and correlation," METRON, Springer;Sapienza Università di Roma, vol. 72(3), pages 283-306, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:90:y:2003:i:2:p:269-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.