IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v89y2002i4p819-829.html
   My bibliography  Save this article

Estimation of nonstationary spatial covariance structure

Author

Listed:
  • David J. Nott

Abstract

We introduce a method for estimating nonstationary spatial covariance structure from space-time data and apply the method to an analysis of Sydney wind patterns. Our method constructs a process honouring a given spatial covariance matrix at observing stations and uses one or more stationary processes to describe conditional behaviour given observing site values. The stationary processes give a localised description of the spatial covariance structure. The method is computationally attractive, and can be extended to the assessment of covariance for multivariate processes. The technique is illustrated for data describing the east-west component of Sydney winds. For this example, our own methods are contrasted with a geometrically appealing though computationally intensive technique which describes spatial correlation via an isotropic process and a deformation of the geographical space. Copyright Biometrika Trust 2002, Oxford University Press.

Suggested Citation

  • David J. Nott, 2002. "Estimation of nonstationary spatial covariance structure," Biometrika, Biometrika Trust, vol. 89(4), pages 819-829, December.
  • Handle: RePEc:oup:biomet:v:89:y:2002:i:4:p:819-829
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margaret C Johnson & Brian J Reich & Josh M Gray, 2021. "Multisensor fusion of remotely sensed vegetation indices using space‐time dynamic linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 793-812, June.
    2. Fred Espen Benth & Jūratė Šaltytė Benth, 2012. "Modeling and Pricing in Financial Markets for Weather Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8457, August.
    3. Marco H. Benedetti & Veronica J. Berrocal & Naveen N. Narisetty, 2022. "Identifying regions of inhomogeneities in spatial processes via an M‐RA and mixture priors," Biometrics, The International Biometric Society, vol. 78(2), pages 798-811, June.
    4. Miryam S. Merk & Philipp Otto, 2022. "Estimation of the spatial weighting matrix for regular lattice data—An adaptive lasso approach with cross‐sectional resampling," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:89:y:2002:i:4:p:819-829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.