IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v89y2002i3p669-682.html
   My bibliography  Save this article

A Poisson model for the coverage problem with a genomic application

Author

Listed:
  • Chang Xuan Mao

Abstract

Suppose a population has infinitely many individuals and is partitioned into unknown N disjoint classes. The sample coverage of a random sample from the population is the total proportion of the classes observed in the sample. This paper uses a nonparametric Poisson mixture model to give new understanding and results for inference on the sample coverage. The Poisson mixture model provides a simplified framework for inferring any general abundance-K coverage, the sum of the proportions of those classes that contribute exactly k individuals in the sample for some k in K, with K being a set of nonnegative integers. A new moment-based derivation of the well-known Turing estimators is presented. As an application, a gene-categorisation problem in genomic research is addressed. Since Turing's approach is a moment-based method, maximum likelihood estimation and minimum distance estimation are indicated as alternatives for the coverage problem. Finally, it will be shown that any Turing estimator is asymptotically fully efficient. Copyright Biometrika Trust 2002, Oxford University Press.

Suggested Citation

  • Chang Xuan Mao, 2002. "A Poisson model for the coverage problem with a genomic application," Biometrika, Biometrika Trust, vol. 89(3), pages 669-682, August.
  • Handle: RePEc:oup:biomet:v:89:y:2002:i:3:p:669-682
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A new estimator of the discovery probability," DEM Working Papers Series 007, University of Pavia, Department of Economics and Management.
    2. Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster, 2009. "Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 993-1008, November.
    3. Pierpaolo De Blasi & Stefano Favaro & Antonio Lijoi & Ramsés H. Mena & Igor Prünster & Mattteo Ruggiero, 2013. "Are Gibbs-type priors the most natural generalization of the Dirichlet process?," DEM Working Papers Series 054, University of Pavia, Department of Economics and Management.
    4. Stefano Favaro & Antonio Lijoi & Igor Prünster, 2012. "A New Estimator of the Discovery Probability," Biometrics, The International Biometric Society, vol. 68(4), pages 1188-1196, December.
    5. Antonio Lijoi & Igor Pruenster & Stephen G. Walker, 2008. "Bayesian nonparametric estimators derived from conditional Gibbs structures," ICER Working Papers - Applied Mathematics Series 06-2008, ICER - International Centre for Economic Research.
    6. Rodríguez, Abel, 2013. "On the Jeffreys prior for the multivariate Ewens distribution," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1539-1546.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:89:y:2002:i:3:p:669-682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.