IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v112y2025i2p945-61..html
   My bibliography  Save this article

Consistency of common spatial estimators under spatial confounding

Author

Listed:
  • Brian Gilbert
  • Elizabeth L Ogburn
  • Abhirup Datta

Abstract

SummaryThis article addresses the asymptotic performance of popular spatial regression estimators of the linear effect of an exposure on an outcome under spatial confounding, the presence of an unmeasured spatially structured variable influencing both the exposure and the outcome. We first show that the estimators from ordinary least squares and restricted spatial regression are asymptotically biased under spatial confounding. We then prove a novel result on the infill consistency of the generalized least squares estimator using a working covariance matrix from a Matérn or squared exponential kernel, in the presence of spatial confounding. The result holds under very mild assumptions, accommodating any exposure with some nonspatial variation, any spatially continuous fixed confounder function, and non-Gaussian errors in both the exposure and the outcome. Finally, we prove that spatial estimators from generalized least squares, Gaussian process regression and spline models that are consistent under confounding by a fixed function will also be consistent under endogeneity or confounding by a random function, i.e., a stochastic process. We conclude that, contrary to some claims in the literature on spatial confounding, traditional spatial estimators are capable of estimating linear exposure effects under spatial confounding as long as there is some noise in the exposure. We support our theoretical arguments with simulation studies.

Suggested Citation

  • Brian Gilbert & Elizabeth L Ogburn & Abhirup Datta, 2025. "Consistency of common spatial estimators under spatial confounding," Biometrika, Biometrika Trust, vol. 112(2), pages 945-961.
  • Handle: RePEc:oup:biomet:v:112:y:2025:i:2:p:945-61.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asae070
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:112:y:2025:i:2:p:945-61.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.