Author
Listed:
- A Chatterjee
- B B Bhattacharya
Abstract
SummaryThe kernel two-sample test based on the maximum mean discrepancy is one of the most popular methods for detecting differences between two distributions over general metric spaces. In this paper we propose a method to boost the power of the kernel test by combining maximum mean discrepancy estimates over multiple kernels using their Mahalanobis distance. We derive the asymptotic null distribution of the proposed test statistic and use a multiplier bootstrap approach to efficiently compute the rejection region. The resulting test is universally consistent and, since it is obtained by aggregating over a collection of kernels/bandwidths, is more powerful in detecting a wide range of alternatives in finite samples. We also derive the distribution of the test statistic for both fixed and local contiguous alternatives. The latter, in particular, implies that the proposed test is statistically efficient, that is, it has nontrivial asymptotic (Pitman) efficiency. The consistency properties of the Mahalanobis and other natural aggregation methods are also explored when the number of kernels is allowed to grow with the sample size. Extensive numerical experiments are performed on both synthetic and real-world datasets to illustrate the efficacy of the proposed method over single-kernel tests. The computational complexity of the proposed method is also studied, both theoretically and in simulations. Our asymptotic results rely on deriving the joint distribution of the maximum mean discrepancy estimates using the framework of multiple stochastic integrals, which is more broadly useful, specifically, in understanding the efficiency properties of recently proposed adaptive maximum mean discrepancy tests based on kernel aggregation and also in developing more computationally efficient, linear-time tests that combine multiple kernels. We conclude with an application of the Mahalanobis aggregation method for kernels with diverging scaling parameters.
Suggested Citation
A Chatterjee & B B Bhattacharya, 2025.
"Boosting the power of kernel two-sample tests,"
Biometrika, Biometrika Trust, vol. 112(1), pages 1148-1159.
Handle:
RePEc:oup:biomet:v:112:y:2025:i:1:p:1148-59.
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:112:y:2025:i:1:p:1148-59.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.