IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v111y2024i4p1277-1292..html
   My bibliography  Save this article

Difference-based covariance matrix estimation in time series nonparametric regression with application to specification tests

Author

Listed:
  • Lujia Bai
  • Weichi Wu

Abstract

SummaryLong-run covariance matrix estimation is the building block of time series inference. The corresponding difference-based estimator, which avoids detrending, has attracted considerable interest due to its robustness to both smooth and abrupt structural breaks and its competitive finite sample performance. However, existing methods mainly focus on estimators for the univariate process, while their direct and multivariate extensions for most linear models are asymptotically biased. We propose a novel difference-based and debiased long-run covariance matrix estimator for functional linear models with time-varying regression coefficients, allowing time series nonstationarity, long-range dependence, state heteroscedasticity and combinations thereof. We apply the new estimator to (i) the structural stability test, overcoming the notorious nonmonotonic power phenomena caused by piecewise smooth alternatives for regression coefficients, and (ii) the nonparametric residual-based tests for long memory, improving the performance via the residual-free formula of the proposed estimator. The effectiveness of the proposed method is justified theoretically and demonstrated by superior performance in simulation studies, while its usefulness is elaborated via real data analysis. Our method is implemented in the R package mlrv.

Suggested Citation

  • Lujia Bai & Weichi Wu, 2024. "Difference-based covariance matrix estimation in time series nonparametric regression with application to specification tests," Biometrika, Biometrika Trust, vol. 111(4), pages 1277-1292.
  • Handle: RePEc:oup:biomet:v:111:y:2024:i:4:p:1277-1292.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asae013
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:4:p:1277-1292.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.