IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v111y2024i4p1221-1240..html
   My bibliography  Save this article

Network-adjusted covariates for community detection

Author

Listed:
  • Y Hu
  • W Wang

Abstract

SummaryCommunity detection is a crucial task in network analysis that can be significantly improved by incorporating subject-level information, ie, covariates. Existing methods have shown the effectiveness of using covariates on the low-degree nodes, but rarely discuss the case where communities have significantly different density levels, ie, multiscale networks. In this paper, we introduce a novel method that addresses this challenge by constructing network-adjusted covariates, which leverage the network connections and covariates with a node-specific weight for each node. This weight can be calculated without tuning parameters. We present novel theoretical results on the strong consistency of our method under degree-corrected stochastic blockmodels with covariates, even in the presence of misspecification and multiple sparse communities. Additionally, we establish a general lower bound for the community detection problem when both the network and covariates are present, and it shows that our method is optimal for connection intensity up to a constant factor. Our method outperforms existing approaches in simulations and a LastFM app user network. We then compare our method with others on a statistics publication citation network where 30% of nodes are isolated, and our method produces reasonable and balanced results. Our method is implemented in the R package NAC.

Suggested Citation

  • Y Hu & W Wang, 2024. "Network-adjusted covariates for community detection," Biometrika, Biometrika Trust, vol. 111(4), pages 1221-1240.
  • Handle: RePEc:oup:biomet:v:111:y:2024:i:4:p:1221-1240.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asae011
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:4:p:1221-1240.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.