IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v111y2024i3p881-902..html
   My bibliography  Save this article

Phylogenetic association analysis with conditional rank correlation

Author

Listed:
  • Shulei Wang
  • Bo Yuan
  • T Tony Cai
  • Hongzhe Li

Abstract

SummaryPhylogenetic association analysis plays a crucial role in investigating the correlation between microbial compositions and specific outcomes of interest in microbiome studies. However, existing methods for testing such associations have limitations related to the assumption of a linear association in high-dimensional settings and the handling of confounding effects. Hence, there is a need for methods capable of characterizing complex associations, including nonmonotonic relationships. This article introduces a novel phylogenetic association analysis framework and associated tests to address these challenges by employing conditional rank correlation as a measure of association. The proposed tests account for confounders in a fully nonparametric manner, ensuring robustness against outliers and the ability to detect diverse dependencies. The proposed framework aggregates conditional rank correlations for subtrees using weighted sum and maximum approaches to capture both dense and sparse signals. The significance level of the test statistics is determined by calibration through a nearest-neighbour bootstrapping method, which is straightforward to implement and can accommodate additional datasets when these are available. The practical advantages of the proposed framework are demonstrated through numerical experiments using both simulated and real microbiome datasets.

Suggested Citation

  • Shulei Wang & Bo Yuan & T Tony Cai & Hongzhe Li, 2024. "Phylogenetic association analysis with conditional rank correlation," Biometrika, Biometrika Trust, vol. 111(3), pages 881-902.
  • Handle: RePEc:oup:biomet:v:111:y:2024:i:3:p:881-902.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asad075
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:3:p:881-902.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.