IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v111y2024i2p643-660..html
   My bibliography  Save this article

Estimation of prediction error in time series

Author

Listed:
  • Alexander Aue
  • Prabir Burman

Abstract

SummaryThe accurate estimation of prediction errors in time series is an important problem, which has immediate implications for the accuracy of prediction intervals as well as the quality of a number of widely used time series model selection criteria such as the Akaike information criterion. Except for simple cases, however, it is difficult or even impossible to obtain exact analytical expressions for one-step and multi-step predictions. This may be one of the reasons that, unlike in the independent case (see Efron, 2004), up to now there has been no fully established methodology for time series prediction error estimation. Starting from an approximation to the bias-variance decomposition of the squared prediction error, a method for accurate estimation of prediction errors in both univariate and multivariate stationary time series is developed in this article. In particular, several estimates are derived for a general class of predictors that includes most of the popular linear, nonlinear, parametric and nonparametric time series models used in practice, with causal invertible autoregressive moving average and nonparametric autoregressive processes discussed as lead examples. Simulations demonstrate that the proposed estimators perform quite well in finite samples. The estimates may also be used for model selection when the purpose of modelling is prediction.

Suggested Citation

  • Alexander Aue & Prabir Burman, 2024. "Estimation of prediction error in time series," Biometrika, Biometrika Trust, vol. 111(2), pages 643-660.
  • Handle: RePEc:oup:biomet:v:111:y:2024:i:2:p:643-660.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asad053
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:2:p:643-660.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.