IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v111y2024i1p129-145..html
   My bibliography  Save this article

One-step targeted maximum likelihood estimation for targeting cause-specific absolute risks and survival curves

Author

Listed:
  • H C W Rytgaard
  • M J van der Laan

Abstract

SummaryThis paper considers the one-step targeted maximum likelihood estimation methodology for multi-dimensional causal parameters in general survival and competing risk settings where event times take place on the positive real line and are subject to right censoring. We focus on effects of baseline treatment decisions possibly confounded by pretreatment covariates, but remark that our work generalizes to settings with time-varying treatment regimes and time-dependent confounding. We point out two overall contributions of our work. First, our methods can be used to obtain simultaneous inference for treatment effects on multiple absolute risks in competing risk settings. Second, our methods can be used to achieve inference for the full survival curve, or a full absolute risk curve, across time. The one-step targeted maximum likelihood procedure is based on a one-dimensional universal least favourable submodel for each cause-specific hazard that we implement in recursive steps along a corresponding nonuniversal multivariate least favourable submodel. Our empirical study demonstrates the practical use of the methods.

Suggested Citation

  • H C W Rytgaard & M J van der Laan, 2024. "One-step targeted maximum likelihood estimation for targeting cause-specific absolute risks and survival curves," Biometrika, Biometrika Trust, vol. 111(1), pages 129-145.
  • Handle: RePEc:oup:biomet:v:111:y:2024:i:1:p:129-145.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asad033
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:1:p:129-145.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.