IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v111y2024i1p109-127..html
   My bibliography  Save this article

Hybrid confidence intervals for informative uniform asymptotic inference after model selection

Author

Listed:
  • A McCloskey

Abstract

I propose a new type of confidence interval for correct asymptotic inference after using data to select a model of interest without assuming any model is correctly specified. This hybrid confidence interval is constructed by combining techniques from the selective inference and post-selection inference literatures to yield a short confidence interval across a wide range of data realizations. I show that hybrid confidence intervals have correct asymptotic coverage, uniformly over a large class of probability distributions that do not bound scaled model parameters. I illustrate the use of these confidence intervals in the problem of inference after using the lasso objective function to select a regression model of interest and provide evidence of their desirable length and coverage properties in small samples via a set of Monte Carlo experiments that entail a variety of different data distributions as well as an empirical application to the predictors of diabetes disease progression.

Suggested Citation

  • A McCloskey, 2024. "Hybrid confidence intervals for informative uniform asymptotic inference after model selection," Biometrika, Biometrika Trust, vol. 111(1), pages 109-127.
  • Handle: RePEc:oup:biomet:v:111:y:2024:i:1:p:109-127.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asad023
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:111:y:2024:i:1:p:109-127.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.