IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v110y2023i4p913-931..html
   My bibliography  Save this article

Targeted optimal treatment regime learning using summary statistics

Author

Listed:
  • J Chu
  • W Lu
  • S Yang

Abstract

SummaryPersonalized decision-making, aiming to derive optimal treatment regimes based on individual characteristics, has recently attracted increasing attention in many fields, such as medicine, social services and economics. Current literature mainly focuses on estimating treatment regimes from a single source population. In real-world applications, the distribution of a target population can be different from that of the source population. Therefore, treatment regimes learned by existing methods may not generalize well to the target popu- lation. Because of privacy concerns and other practical issues, individual-level data from the target population are often not available, which makes treatment regime learning more challenging. We consider the problem of treatment regime estimation when the source and target populations may be heterogeneous, individual-level data are available from the source population and only the summary information of covariates, such as moments, is accessible from the target population. We develop a weighting framework that tailors a treatment regime for a given target population by leveraging the available summary statistics. Specifically, we propose a calibrated augmented inverse probability weighted estimator of the value function for the target population and estimate an optimal treatment regime by maximizing this estimator within a class of prespecified regimes. We show that the proposed calibrated estimator is consistent and asymptotically normal even with flexible semi/nonparametric models for nuisance function approximation, and that the variance of the value estimator can be consistently estimated. We demonstrate the empirical performance of the proposed method using simulation studies and a real application using two datasets on sepsis.

Suggested Citation

  • J Chu & W Lu & S Yang, 2023. "Targeted optimal treatment regime learning using summary statistics," Biometrika, Biometrika Trust, vol. 110(4), pages 913-931.
  • Handle: RePEc:oup:biomet:v:110:y:2023:i:4:p:913-931.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asad020
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:110:y:2023:i:4:p:913-931.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.