IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v110y2023i3p681-697..html
   My bibliography  Save this article

Thresholded graphical lasso adjusts for latent variables

Author

Listed:
  • Minjie Wang
  • Genevera I Allen

Abstract

SummaryStructural learning of Gaussian graphical models in the presence of latent variables has long been a challenging problem. Chandrasekaran et al. (2012) proposed a convex program for estimating a sparse graph plus a low-rank term that adjusts for latent variables; however, this approach poses challenges from both computational and statistical perspectives. We propose an alternative, simple solution: apply a hard-thresholding operator to existing graph selection methods. Conceptually simple and computationally attractive, the approach of thresholding the graphical lasso is shown to be graph selection consistent in the presence of latent variables under a simpler minimum edge strength condition and at an improved statistical rate. The results are extended to estimators for thresholded neighbourhood selection and constrained -minimization for inverse matrix estimation as well. We show that our simple thresholded graph estimators yield stronger empirical results than existing methods for the latent variable graphical model problem, and we apply them to a neuroscience case study on estimating functional neural connections.

Suggested Citation

  • Minjie Wang & Genevera I Allen, 2023. "Thresholded graphical lasso adjusts for latent variables," Biometrika, Biometrika Trust, vol. 110(3), pages 681-697.
  • Handle: RePEc:oup:biomet:v:110:y:2023:i:3:p:681-697.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asac060
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:110:y:2023:i:3:p:681-697.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.