IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v110y2023i2p431-447..html
   My bibliography  Save this article

Lasso-adjusted treatment effect estimation under covariate-adaptive randomization

Author

Listed:
  • Hanzhong Liu
  • Fuyi Tu
  • Wei Ma

Abstract

SummaryWe consider the problem of estimating and inferring treatment effects in randomized experiments. In practice, stratified randomization, or more generally, covariate-adaptive randomization, is routinely used in the design stage to balance treatment allocations with respect to a few variables that are most relevant to the outcomes. Then, regression is performed in the analysis stage to adjust the remaining imbalances to yield more efficient treatment effect estimators. Building upon and unifying recent results obtained for ordinary-least-squares adjusted estimators under covariate-adaptive randomization, this paper presents a general theory of regression adjustment that allows for model mis-specification and the presence of a large number of baseline covariates. We exemplify the theory on two lasso-adjusted treatment effect estimators, both of which are optimal in their respective classes. In addition, nonparametric consistent variance estimators are proposed to facilitate valid inferences, which work irrespective of the specific randomization methods used. The robustness and improved efficiency of the proposed estimators are demonstrated through numerical studies.

Suggested Citation

  • Hanzhong Liu & Fuyi Tu & Wei Ma, 2023. "Lasso-adjusted treatment effect estimation under covariate-adaptive randomization," Biometrika, Biometrika Trust, vol. 110(2), pages 431-447.
  • Handle: RePEc:oup:biomet:v:110:y:2023:i:2:p:431-447.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asac036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:110:y:2023:i:2:p:431-447.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.