IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v110y2023i1p83-99..html
   My bibliography  Save this article

Testing generalized linear models with high-dimensional nuisance parameters

Author

Listed:
  • Jinsong Chen
  • Quefeng Li
  • Hua Yun Chen

Abstract

SummaryGeneralized linear models often have high-dimensional nuisance parameters, as seen in applications such as testing gene-environment interactions or gene-gene interactions. In these scenarios, it is essential to test the significance of a high-dimensional subvector of the model’s coefficients. Although some existing methods can tackle this problem, they often rely on the bootstrap to approximate the asymptotic distribution of the test statistic, and are thus computationally expensive. Here, we propose a computationally efficient test with a closed-form limiting distribution, which allows the parameter being tested to be either sparse or dense. We show that, under certain regularity conditions, the Type-I error of the proposed method is asymptotically correct, and we establish its power under high-dimensional alternatives. Extensive simulations demonstrate the good performance of the proposed test and its robustness when certain sparsity assumptions are violated. We also apply the proposed method to Chinese famine sample data in order to show its performance when testing the significance of gene-environment interactions.

Suggested Citation

  • Jinsong Chen & Quefeng Li & Hua Yun Chen, 2023. "Testing generalized linear models with high-dimensional nuisance parameters," Biometrika, Biometrika Trust, vol. 110(1), pages 83-99.
  • Handle: RePEc:oup:biomet:v:110:y:2023:i:1:p:83-99.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asac021
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:110:y:2023:i:1:p:83-99.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.