IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i3p707-720..html
   My bibliography  Save this article

Joint latent space models for network data with high-dimensional node variables
[Statistical inference on random dot product graphs: a survey]

Author

Listed:
  • Xuefei Zhang
  • Gongjun Xu
  • Ji Zhu

Abstract

SummaryNetwork latent space models assume that each node is associated with an unobserved latent position in a Euclidean , and such latent variables determine the probability of two nodes connecting with each other. In many applications, nodes in the network are often observed along with high-dimensional node variables, and these node variables provide important information for understanding the network structure. However, classical network latent space models have several limitations in incorporating node variables. In this paper, we propose a joint latent space model where we assume that the latent variables not only explain the network structure, but are also informative for the multivariate node variables. We develop a projected gradient descent algorithm that estimates the latent positions using a criterion incorporating both network structure and node variables. We establish theoretical properties of the estimators and provide insights into how incorporating high-dimensional node variables could improve the estimation accuracy of the latent positions. We demonstrate the improvement in latent variable estimation and the improvements in associated downstream tasks, such as missing value imputation for node variables, by simulation studies and an application to a Facebook data example.

Suggested Citation

  • Xuefei Zhang & Gongjun Xu & Ji Zhu, 2022. "Joint latent space models for network data with high-dimensional node variables [Statistical inference on random dot product graphs: a survey]," Biometrika, Biometrika Trust, vol. 109(3), pages 707-720.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:3:p:707-720.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab063
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Xinyan & Fang, Kuangnan & Pu, Dan & Qin, Ruixuan, 2024. "Generalized latent space model for one-mode networks with awareness of two-mode networks," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:3:p:707-720.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.