IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i2p335-349..html
   My bibliography  Save this article

A discrete bouncy particle sampler
[Hypocoercivity of piecewise deterministic Markov process-Monte Carlo]

Author

Listed:
  • C Sherlock
  • A H Thiery

Abstract

SummaryMost Markov chain Monte Carlo methods operate in discrete time and are reversible with respect to the target probability. Nevertheless, it is now understood that the use of nonreversible Markov chains can be beneficial in many contexts. In particular, the recently proposed bouncy particle sampler leverages a continuous-time and nonreversible Markov process, and empirically shows state-of-the-art performance when used to explore certain probability densities; however, its implementation typically requires the computation of local upper bounds on the gradient of the log target density. We present the discrete bouncy particle sampler, a general algorithm based on a guided random walk, a partial refreshment of direction and a delayed-rejection step. We show that the bouncy particle sampler can be understood as a scaling limit of a special case of our algorithm. In contrast to the bouncy particle sampler, implementing the discrete bouncy particle sampler only requires pointwise evaluation of the target density and its gradient. We propose extensions of the basic algorithm for situations when the exact gradient of the target density is not available. In a Gaussian setting, we establish a scaling limit for the radial process as the dimension increases to infinity. We leverage this result to obtain the theoretical efficiency of the discrete bouncy particle sampler as a function of the partial-refreshment parameter, which leads to a simple and robust tuning criterion. A further analysis in a more general setting suggests that this tuning criterion applies more generally. Theoretical and empirical efficiency curves are then compared for different targets and algorithm variations.

Suggested Citation

  • C Sherlock & A H Thiery, 2022. "A discrete bouncy particle sampler [Hypocoercivity of piecewise deterministic Markov process-Monte Carlo]," Biometrika, Biometrika Trust, vol. 109(2), pages 335-349.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:335-349.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab013
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M Ludkin & C Sherlock, 2023. "Hug and hop: a discrete-time, nonreversible Markov chain Monte Carlo algorithm," Biometrika, Biometrika Trust, vol. 110(2), pages 301-318.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:335-349.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.