IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i1p67-83..html
   My bibliography  Save this article

Heterogeneity-aware and communication-efficient distributed statistical inference
[Privacy, confidentiality, and electronic medical records]

Author

Listed:
  • Rui Duan
  • Yang Ning
  • Yong Chen

Abstract

SummaryIn multicentre research, individual-level data are often protected against sharing across sites. To overcome the barrier of data sharing, many distributed algorithms, which only require sharing aggregated information, have been developed. The existing distributed algorithms usually assume the data are homogeneously distributed across sites. This assumption ignores the important fact that the data collected at different sites may come from various subpopulations and environments, which can lead to heterogeneity in the distribution of the data. Ignoring the heterogeneity may lead to erroneous statistical inference. We propose distributed algorithms which account for the heterogeneous distributions by allowing site-specific nuisance parameters. The proposed methods extend the surrogate likelihood approach (Wang et al. 2017; Jordan et al. 2018) to the heterogeneous setting by applying a novel density ratio tilting method to the efficient score function. The proposed algorithms maintain the same communication cost as existing communication-efficient algorithms. We establish a nonasymptotic risk bound for the proposed distributed estimator and its limiting distribution in the two-index asymptotic setting, which allows both sample size per site and the number of sites to go to infinity. In addition, we show that the asymptotic variance of the estimator attains the Cramér–Rao lower bound when the number of sites is smaller in rate than the sample size at each site. Finally, we use simulation studies and a real data application to demonstrate the validity and feasibility of the proposed methods.

Suggested Citation

  • Rui Duan & Yang Ning & Yong Chen, 2022. "Heterogeneity-aware and communication-efficient distributed statistical inference [Privacy, confidentiality, and electronic medical records]," Biometrika, Biometrika Trust, vol. 109(1), pages 67-83.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:1:p:67-83.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:1:p:67-83.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.