IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i1p49-65..html
   My bibliography  Save this article

Efficient adjustment sets in causal graphical models with hidden variables
[Double/debiased machine learning for treatment and structural parameters]

Author

Listed:
  • E Smucler
  • F Sapienza
  • A Rotnitzky

Abstract

SummaryWe study the selection of adjustment sets for estimating the interventional mean under a point exposure dynamic treatment regime, that is, a treatment rule that depends on the subject’s covariates. We assume a nonparametric causal graphical model with, possibly, hidden variables and at least one adjustment set comprised of observable variables. We provide the definition of a valid adjustment set for a point exposure dynamic treatment regime, which generalizes the existing definition for a static intervention. We show that there exists an adjustment set, referred to as optimal minimal, that yields the nonparametric estimator of the interventional mean with the smallest asymptotic variance among those that are based on observable minimal adjustment sets. An observable minimal adjustment set is a valid adjustment set such that all its variables are observable and the removal of any of its variables destroys its validity. We provide similar optimality results for the class of observable minimum adjustment sets, that is, valid observable adjustment sets of minimum cardinality among the observable adjustment sets. Moreover, we show that if either no variables are hidden or if all the observable variables are ancestors of either treatment, outcome or the variables that are used to decide treatment, a globally optimal adjustment set exists. We provide polynomial-time algorithms to compute the globally optimal, optimal minimal and optimal minimum adjustment sets. Because static interventions can be viewed as a special case of dynamic regimes, all our results also apply for static interventions.

Suggested Citation

  • E Smucler & F Sapienza & A Rotnitzky, 2022. "Efficient adjustment sets in causal graphical models with hidden variables [Double/debiased machine learning for treatment and structural parameters]," Biometrika, Biometrika Trust, vol. 109(1), pages 49-65.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:1:p:49-65.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:1:p:49-65.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.