IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i1p209-226..html
   My bibliography  Save this article

Sparse functional linear discriminant analysis
[On the use of reproducing kernel Hilbert spaces in functional classification]

Author

Listed:
  • Juhyun Park
  • Jeongyoun Ahn
  • Yongho Jeon

Abstract

SummaryFunctional linear discriminant analysis provides a simple yet efficient method for classification, with the possibility of achieving perfect classification. Several methods have been proposed in the literature that mostly address the dimensionality of the problem. On the other hand, there is growing interest in interpretability of the analysis, which favours a simple and sparse solution. In this paper we propose a new approach that incorporates a type of sparsity that identifies nonzero subdomains in the functional setting, yielding a solution that is easier to interpret without compromising performance. Given the need to embed additional constraints in the solution, we reformulate functional linear discriminant analysis as a regularization problem with an appropriate penalty. Inspired by the success of -type regularization at inducing zero coefficients for scalar variables, we develop a new regularization method for functional linear discriminant analysis that incorporates an -type penalty, , to induce zero regions. We demonstrate that our formulation has a well-defined solution that contains zero regions, achieving functional sparsity in the sense of domain selection. In addition, the misclassification probability of the regularized solution is shown to converge to the Bayes error if the data are Gaussian. Our method does not assume that the underlying function has zero regions in the domain, but it produces a sparse estimator that consistently estimates the true function whether or not the latter is sparse. Using both simulated and real data examples, we demonstrate this property of our method in finite samples through comparisons with existing methods.

Suggested Citation

  • Juhyun Park & Jeongyoun Ahn & Yongho Jeon, 2022. "Sparse functional linear discriminant analysis [On the use of reproducing kernel Hilbert spaces in functional classification]," Biometrika, Biometrika Trust, vol. 109(1), pages 209-226.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:1:p:209-226.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa107
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengyun Wu & Fan Wang & Yeheng Ge & Shuangge Ma & Yang Li, 2023. "Bi‐level structured functional analysis for genome‐wide association studies," Biometrics, The International Biometric Society, vol. 79(4), pages 3359-3373, December.

    More about this item

    Keywords

    Domain selection; Functional classification; Functional sparsity; Interpretability; L1 penalty; Linear discriminant analysis;
    All these keywords.

    JEL classification:

    • L1 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:1:p:209-226.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.