IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i1p195-208..html
   My bibliography  Save this article

Statistical inference on shape and size indexes for counting processes
[Rank estimation of a transformation model with observed truncation]

Author

Listed:
  • Yifei Sun
  • Sy Han Chiou
  • Kieren A Marr
  • Chiung-Yu Huang

Abstract

SummarySingle-index models have gained increased popularity in time-to-event analysis owing to their model flexibility and advantage in dimension reduction. We propose a semiparametric framework for the rate function of a recurrent event counting process by modelling its size and shape components with single-index models. With additional monotone constraints on the two link functions for the size and shape components, the proposed model possesses the desired directional interpretability of covariate effects and encompasses many commonly used models as special cases. To tackle the analytical challenges arising from leaving the two link functions unspecified, we develop a two-step rank-based estimation procedure to estimate the regression parameters with or without informative censoring. The proposed estimators are asymptotically normal, with a root- convergence rate. To guide model selection, we develop hypothesis testing procedures for checking shape and size independence. Simulation studies and a data example on a hematopoietic stem cell transplantation study are presented to illustrate the proposed methodology.

Suggested Citation

  • Yifei Sun & Sy Han Chiou & Kieren A Marr & Chiung-Yu Huang, 2022. "Statistical inference on shape and size indexes for counting processes [Rank estimation of a transformation model with observed truncation]," Biometrika, Biometrika Trust, vol. 109(1), pages 195-208.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:1:p:195-208.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab008
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyu Wang & Liuquan Sun, 2023. "Joint modeling of generalized scale-change models for recurrent event and failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 1-33, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:1:p:195-208.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.