IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v108y2021i4p965-979..html
   My bibliography  Save this article

On semiparametric modelling, estimation and inference for survival data subject to dependent censoring
[Identifiability of the multinormal and other distributions under competing risks model]

Author

Listed:
  • N W Deresa
  • I Van Keilegom

Abstract

SummaryWhen modelling survival data, it is common to assume that the survival timeis conditionally independent of the censoring timegiven a set of covariates. However, there are numerous situations in which this assumption is not realistic. The goal of this paper is therefore to develop a semiparametric normal transformation model which assumes that, after a proper nonparametric monotone transformation, the vectorfollows a linear model, and the vector of errors in this bivariate linear model follows a standard bivariate normal distribution with a possibly nondiagonal covariance matrix. We show that this semiparametric model is identifiable, and propose estimators of the nonparametric transformation, the regression coefficients and the correlation between the error terms. It is shown that the estimators of the model parameters and the transformation are consistent and asymptotically normal. We also assess the finite-sample performance of the proposed method by comparing it with an estimation method under a fully parametric model. Finally, our method is illustrated using data from the AIDS Clinical Trial Group 175 study.

Suggested Citation

  • N W Deresa & I Van Keilegom, 2021. "On semiparametric modelling, estimation and inference for survival data subject to dependent censoring [Identifiability of the multinormal and other distributions under competing risks model]," Biometrika, Biometrika Trust, vol. 108(4), pages 965-979.
  • Handle: RePEc:oup:biomet:v:108:y:2021:i:4:p:965-979.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa095
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jad Beyhum & Jean-Pierre Florens & Ingrid Van Keilegom, 2021. "A nonparametric instrumental approach to endogeneity in competing risks models," Papers 2105.00946, arXiv.org.
    2. Jad Beyhum & Jean-Pierre Florens & Ingrid Keilegom, 2023. "A nonparametric instrumental approach to confounding in competing risks models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 709-734, October.
    3. Deresa, N.W. & Van Keilegom, I. & Antonio, K., 2022. "Copula-based inference for bivariate survival data with left truncation and dependent censoring," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 1-21.
    4. Xu, Bin, 2023. "Exploring the sustainable growth pathway of wind power in China: Using the semiparametric regression model," Energy Policy, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:108:y:2021:i:4:p:965-979.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.