IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v108y2021i4p795-814..html
   My bibliography  Save this article

Consistency guarantees for greedy permutation-based causal inference algorithms
[Ordering-based causal structure learning in the presence of latent variables]

Author

Listed:
  • L Solus
  • Y Wang
  • C Uhler

Abstract

SummaryDirected acyclic graphical models are widely used to represent complex causal systems. Since the basic task of learning such a model from data is NP-hard, a standard approach is greedy search over the space of directed acyclic graphs or Markov equivalence classes of directed acyclic graphs. As the space of directed acyclic graphs onnodes and the associated space of Markov equivalence classes are both much larger than the space of permutations, it is desirable to consider permutation-based greedy searches. Here, we provide the first consistency guarantees, both uniform and high dimensional, of a greedy permutation-based search. This search corresponds to a simplex-like algorithm operating over the edge-graph of a subpolytope of the permutohedron, called a directed acyclic graph associahedron. Every vertex in this polytope is associated with a directed acyclic graph, and hence with a collection of permutations that are consistent with the directed acyclic graph ordering. A walk is performed on the edges of the polytope maximizing the sparsity of the associated directed acyclic graphs. We show via simulated and real data that this permutation search is competitive with current approaches.

Suggested Citation

  • L Solus & Y Wang & C Uhler, 2021. "Consistency guarantees for greedy permutation-based causal inference algorithms [Ordering-based causal structure learning in the presence of latent variables]," Biometrika, Biometrika Trust, vol. 108(4), pages 795-814.
  • Handle: RePEc:oup:biomet:v:108:y:2021:i:4:p:795-814.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa104
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:108:y:2021:i:4:p:795-814.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.