IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v108y2021i2p353-365..html
   My bibliography  Save this article

On the use of a penalized quasilikelihood information criterion for generalized linear mixed models
[A new look at the statistical model identification]

Author

Listed:
  • Francis K C Hui

Abstract

SummaryInformation criteria are commonly used for joint fixed and random effects selection in mixed models. While information criteria are straightforward to implement, a major difficulty in applying them is that they are typically based on maximum likelihood estimates, but calculating such estimates for one candidate mixed model, let alone multiple models, presents a major computational challenge. To overcome this hurdle, we study penalized quasilikelihood estimation and use it as the basis for performing fast joint selection. Under a general framework, we show that penalized quasilikelihood estimation produces consistent estimates of the true parameters. We then propose a new penalized quasilikelihood information criterion whose distinguishing feature is the way it accounts for model complexity in the random effects, since penalized quasilikelihood estimation effectively treats the random effects as fixed. We demonstrate that the criterion asymptotically identifies the true set of important fixed and random effects. Simulations show that the quasilikelihood information criterion performs competitively with and sometimes better than common maximum likelihood information criteria for joint selection, while offering substantial reductions in computation time.

Suggested Citation

  • Francis K C Hui, 2021. "On the use of a penalized quasilikelihood information criterion for generalized linear mixed models [A new look at the statistical model identification]," Biometrika, Biometrika Trust, vol. 108(2), pages 353-365.
  • Handle: RePEc:oup:biomet:v:108:y:2021:i:2:p:353-365.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa069
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:108:y:2021:i:2:p:353-365.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.