IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v108y2021i2p283-297..html
   My bibliography  Save this article

Statistical properties of sketching algorithms
[The fast Johnson Lindenstrauss transform and approximate nearest neighbors]

Author

Listed:
  • D C Ahfock
  • W J Astle
  • S Richardson

Abstract

SummarySketching is a probabilistic data compression technique that has been largely developed by the computer science community. Numerical operations on big datasets can be intolerably slow; sketching algorithms address this issue by generating a smaller surrogate dataset. Typically, inference proceeds on the compressed dataset. Sketching algorithms generally use random projections to compress the original dataset, and this stochastic generation process makes them amenable to statistical analysis. We argue that the sketched data can be modelled as a random sample, thus placing this family of data compression methods firmly within an inferential framework. In particular, we focus on the Gaussian, Hadamard and Clarkson–Woodruff sketches and their use in single-pass sketching algorithms for linear regression with huge samples. We explore the statistical properties of sketched regression algorithms and derive new distributional results for a large class of sketching estimators. A key result is a conditional central limit theorem for data-oblivious sketches. An important finding is that the best choice of sketching algorithm in terms of mean squared error is related to the signal-to-noise ratio in the source dataset. Finally, we demonstrate the theory and the limits of its applicability on two datasets.

Suggested Citation

  • D C Ahfock & W J Astle & S Richardson, 2021. "Statistical properties of sketching algorithms [The fast Johnson Lindenstrauss transform and approximate nearest neighbors]," Biometrika, Biometrika Trust, vol. 108(2), pages 283-297.
  • Handle: RePEc:oup:biomet:v:108:y:2021:i:2:p:283-297.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa062
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:108:y:2021:i:2:p:283-297.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.