Author
Abstract
SummaryEnvelopes have been proposed in recent years as a nascent methodology for sufficient dimension reduction and efficient parameter estimation in multivariate linear models. We extend the classical definition of envelopes in Cook et al. (2010) to incorporate a nonlinear conditional mean function and a heteroscedastic error. Given any two random vectors ${X}\in\mathbb{R}^{p}$ and ${Y}\in\mathbb{R}^{r}$, we propose two new model-free envelopes, called the martingale difference divergence envelope and the central mean envelope, and study their relationships to the standard envelope in the context of response reduction in multivariate linear models. The martingale difference divergence envelope effectively captures the nonlinearity in the conditional mean without imposing any parametric structure or requiring any tuning in estimation. Heteroscedasticity, or nonconstant conditional covariance of ${Y}\mid{X}$, is further detected by the central mean envelope based on a slicing scheme for the data. We reveal the nested structure of different envelopes: (i) the central mean envelope contains the martingale difference divergence envelope, with equality when ${Y}\mid{X}$ has a constant conditional covariance; and (ii) the martingale difference divergence envelope contains the standard envelope, with equality when ${Y}\mid{X}$ has a linear conditional mean. We develop an estimation procedure that first obtains the martingale difference divergence envelope and then estimates the additional envelope components in the central mean envelope. We establish consistency in envelope estimation of the martingale difference divergence envelope and central mean envelope without stringent model assumptions. Simulations and real-data analysis demonstrate the advantages of the martingale difference divergence envelope and the central mean envelope over the standard envelope in dimension reduction.
Suggested Citation
X Zhang & C E Lee & X Shao, 0.
"Envelopes in multivariate regression models with nonlinearity and heteroscedasticity,"
Biometrika, Biometrika Trust, vol. 107(4), pages 965-981.
Handle:
RePEc:oup:biomet:v:107:y::i:4:p:965-981.
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y::i:4:p:965-981.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.