IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107yi4p875-889..html
   My bibliography  Save this article

Optimal Bayesian estimation for random dot product graphs

Author

Listed:
  • Fangzheng Xie
  • Yanxun Xu

Abstract

SummaryWe propose and prove the optimality of a Bayesian approach for estimating the latent positions in random dot product graphs, which we call posterior spectral embedding. Unlike classical spectral-based adjacency, or Laplacian spectral embedding, posterior spectral embedding is a fully likelihood-based graph estimation method that takes advantage of the Bernoulli likelihood information of the observed adjacency matrix. We develop a minimax lower bound for estimating the latent positions, and show that posterior spectral embedding achieves this lower bound in the following two senses: it both results in a minimax-optimal posterior contraction rate and yields a point estimator achieving the minimax risk asymptotically. The convergence results are subsequently applied to clustering in stochastic block models with positive semidefinite block probability matrices, strengthening an existing result concerning the number of misclustered vertices. We also study a spectral-based Gaussian spectral embedding as a natural Bayesian analogue of adjacency spectral embedding, but the resulting posterior contraction rate is suboptimal by an extra logarithmic factor. The practical performance of the proposed methodology is illustrated through extensive synthetic examples and the analysis of Wikipedia graph data.

Suggested Citation

  • Fangzheng Xie & Yanxun Xu, 0. "Optimal Bayesian estimation for random dot product graphs," Biometrika, Biometrika Trust, vol. 107(4), pages 875-889.
  • Handle: RePEc:oup:biomet:v:107:y::i:4:p:875-889.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa031
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y::i:4:p:875-889.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.