IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i3p753-760..html
   My bibliography  Save this article

Bootstrapping M-estimators in generalized autoregressive conditional heteroscedastic models

Author

Listed:
  • K Mukherjee

Abstract

SummaryWe consider the weighted bootstrap approximation to the distribution of a class of M-estimators for the parameters of the generalized autoregressive conditional heteroscedastic model. We prove that the bootstrap distribution, given the data, is a consistent estimate in probability of the distribution of the M-estimator, which is asymptotically normal. We propose an algorithm for the computation of M-estimates which at the same time is useful for computing bootstrap replicates from the given data. Our simulation study indicates superior coverage rates for various weighted bootstrap schemes compared with the rates based on the normal approximation and existing bootstrap methods for the generalized autoregressive conditional heteroscedastic model, such as percentile $t$-subsampling schemes. Since some familiar bootstrap schemes are special cases of the weighted bootstrap, this paper thus provides a unified theory and algorithm for bootstrapping in generalized autoregressive conditional heteroscedastic models.

Suggested Citation

  • K Mukherjee, 2020. "Bootstrapping M-estimators in generalized autoregressive conditional heteroscedastic models," Biometrika, Biometrika Trust, vol. 107(3), pages 753-760.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:3:p:753-760.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa023
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:3:p:753-760.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.