IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i2p481-488..html
   My bibliography  Save this article

Estimation of error variance via ridge regression

Author

Listed:
  • X Liu
  • S Zheng
  • X Feng

Abstract

SummaryWe propose a novel estimator of error variance and establish its asymptotic properties based on ridge regression and random matrix theory. The proposed estimator is valid under both low- and high-dimensional models, and performs well not only in nonsparse cases, but also in sparse ones. The finite-sample performance of the proposed method is assessed through an intensive numerical study, which indicates that the method is promising compared with its competitors in many interesting scenarios.

Suggested Citation

  • X Liu & S Zheng & X Feng, 2020. "Estimation of error variance via ridge regression," Biometrika, Biometrika Trust, vol. 107(2), pages 481-488.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:481-488.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz074
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Jianhua & Liu, Xiaoqian & Liu, Xu & Xia, Ningning, 2022. "Some aspects of response variable selection and estimation in multivariate linear regression," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Xin Wang & Lingchen Kong & Liqun Wang, 2022. "Estimation of Error Variance in Regularized Regression Models via Adaptive Lasso," Mathematics, MDPI, vol. 10(11), pages 1-19, June.
    3. Pierpaolo Angelini, 2024. "Extended Least Squares Making Evident Nonlinear Relationships between Variables: Portfolios of Financial Assets," JRFM, MDPI, vol. 17(8), pages 1-24, August.
    4. Sayanti Guha Majumdar & Anil Rai & Dwijesh Chandra Mishra, 2023. "Estimation of Error Variance in Genomic Selection for Ultrahigh Dimensional Data," Agriculture, MDPI, vol. 13(4), pages 1-16, April.
    5. Choi, Semin & Kim, Yesool & Park, Gunwoong, 2023. "Densely connected sub-Gaussian linear structural equation model learning via ℓ1- and ℓ2-regularized regressions," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:481-488.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.