IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i2p467-480..html
   My bibliography  Save this article

Robust empirical Bayes small area estimation with density power divergence

Author

Listed:
  • S Sugasawa

Abstract

Summary A two-stage normal hierarchical model called the Fay–Herriot model and the empirical Bayes estimator are widely used to obtain indirect and model-based estimates of means in small areas. However, the performance of the empirical Bayes estimator can be poor when the assumed normal distribution is misspecified. This article presents a simple modification that makes use of density power divergence and proposes a new robust empirical Bayes small area estimator. The mean squared error and estimated mean squared error of the proposed estimator are derived based on the asymptotic properties of the robust estimator of the model parameters. We investigate the numerical performance of the proposed method through simulations and an application to survey data.

Suggested Citation

  • S Sugasawa, 2020. "Robust empirical Bayes small area estimation with density power divergence," Biometrika, Biometrika Trust, vol. 107(2), pages 467-480.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:467-480.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz075
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Boubeta & María José Lombardía & Domingo Morales, 2024. "Small area prediction of proportions and counts under a spatial Poisson mixed model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1193-1215, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:2:p:467-480.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.