IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i1p191-204..html
   My bibliography  Save this article

Bayesian constraint relaxation

Author

Listed:
  • Leo L Duan
  • Alexander L Young
  • Akihiko Nishimura
  • David B Dunson

Abstract

SummaryPrior information often takes the form of parameter constraints. Bayesian methods include such information through prior distributions having constrained support. By using posterior sampling algorithms, one can quantify uncertainty without relying on asymptotic approximations. However, sharply constrained priors are not necessary in some settings and tend to limit modelling scope to a narrow set of distributions that are tractable computationally. We propose to replace the sharp indicator function of the constraint with an exponential kernel, thereby creating a close-to-constrained neighbourhood within the Euclidean space in which the constrained subspace is embedded. This kernel decays with distance from the constrained space at a rate depending on a relaxation hyperparameter. By avoiding the sharp constraint, we enable use of off-the-shelf posterior sampling algorithms, such as Hamiltonian Monte Carlo, facilitating automatic computation in a broad range of models. We study the constrained and relaxed distributions under multiple settings and theoretically quantify their differences. Application of the method is illustrated through several novel modelling examples.

Suggested Citation

  • Leo L Duan & Alexander L Young & Akihiko Nishimura & David B Dunson, 2020. "Bayesian constraint relaxation," Biometrika, Biometrika Trust, vol. 107(1), pages 191-204.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:1:p:191-204.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz069
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:1:p:191-204.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.