IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v107y2020i1p159-172..html
   My bibliography  Save this article

On semiparametric estimation of a path-specific effect in the presence of mediator-outcome confounding

Author

Listed:
  • C H Miles
  • I Shpitser
  • P Kanki
  • S Meloni
  • E J Tchetgen Tchetgen

Abstract

SummaryPath-specific effects constitute a broad class of mediated effects from an exposure to an outcome via one or more causal pathways along a set of intermediate variables. Most of the literature concerning estimation of mediated effects has focused on parametric models, with stringent assumptions regarding unmeasured confounding. We consider semiparametric inference of a path-specific effect when these assumptions are relaxed. In particular, we develop a suite of semiparametric estimators for the effect along a pathway through a mediator, but not through an exposure-induced confounder of that mediator. These estimators have different robustness properties, as each depends on different parts of the likelihood of the observed data. One estimator is locally semiparametric efficient and multiply robust. The latter property implies that machine learning can be used to estimate nuisance functions. We demonstrate these properties, as well as finite-sample properties of all the estimators, in a simulation study. We apply our method to an HIV study, in which we estimate the effect comparing two drug treatments on a patient’s average log CD4 count mediated by the patient’s level of adherence, but not by previous experience of toxicity, which is clearly affected by which treatment the patient is assigned to and may confound the effect of the patient’s level of adherence on their virologic outcome.

Suggested Citation

  • C H Miles & I Shpitser & P Kanki & S Meloni & E J Tchetgen Tchetgen, 2020. "On semiparametric estimation of a path-specific effect in the presence of mediator-outcome confounding," Biometrika, Biometrika Trust, vol. 107(1), pages 159-172.
  • Handle: RePEc:oup:biomet:v:107:y:2020:i:1:p:159-172.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz063
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:107:y:2020:i:1:p:159-172.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.