IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i4p973-980..html
   My bibliography  Save this article

On causal discovery with an equal-variance assumption

Author

Listed:
  • Wenyu Chen
  • Mathias Drton
  • Y Samuel Wang

Abstract

SummaryPrior work has shown that causal structure can be uniquely identified from observational data when these follow a structural equation model whose error terms have equal variance. We show that this fact is implied by an ordering among conditional variances. We demonstrate that ordering estimates of these variances yields a simple yet state-of-the-art method for causal structure learning that is readily extendable to high-dimensional problems.

Suggested Citation

  • Wenyu Chen & Mathias Drton & Y Samuel Wang, 2019. "On causal discovery with an equal-variance assumption," Biometrika, Biometrika Trust, vol. 106(4), pages 973-980.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:973-980.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz049
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Gunwoong & Kim, Yesool, 2021. "Learning high-dimensional Gaussian linear structural equation models with heterogeneous error variances," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    2. Choi, Semin & Kim, Yesool & Park, Gunwoong, 2023. "Densely connected sub-Gaussian linear structural equation model learning via ℓ1- and ℓ2-regularized regressions," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:973-980.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.