IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i4p803-821..html
   My bibliography  Save this article

Fréchet analysis of variance for random objects

Author

Listed:
  • Paromita Dubey
  • Hans-Georg Müller

Abstract

SummaryFréchet mean and variance provide a way of obtaining a mean and variance for metric space-valued random variables, and can be used for statistical analysis of data objects that lie in abstract spaces devoid of algebraic structure and operations. Examples of such data objects include covariance matrices, graph Laplacians of networks and univariate probability distribution functions. We derive a central limit theorem for the Fréchet variance under mild regularity conditions, using empirical process theory, and also provide a consistent estimator of the asymptotic variance. These results lead to a test for comparing $k$ populations of metric space-valued data objects in terms of Fréchet means and variances. We examine the finite-sample performance of this novel inference procedure through simulation studies on several special cases that include probability distributions and graph Laplacians, leading to a test for comparing populations of networks. The proposed approach has good finite-sample performance in simulations for different kinds of random objects. We illustrate the proposed methods by analysing data on mortality profiles of various countries and resting-state functional magnetic resonance imaging data.

Suggested Citation

  • Paromita Dubey & Hans-Georg Müller, 2019. "Fréchet analysis of variance for random objects," Biometrika, Biometrika Trust, vol. 106(4), pages 803-821.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:803-821.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz052
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Rejoinder on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 76-82, March.
    2. Janice L. Scealy, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 68-70, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:803-821.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.