IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i4p781-801..html
   My bibliography  Save this article

Bootstrapping spectral statistics in high dimensions

Author

Listed:
  • Miles E Lopes
  • Andrew Blandino
  • Alexander Aue

Abstract

SummaryStatistics derived from the eigenvalues of sample covariance matrices are called spectral statistics, and they play a central role in multivariate testing. Although bootstrap methods are an established approach to approximating the laws of spectral statistics in low-dimensional problems, such methods are relatively unexplored in the high-dimensional setting. The aim of this article is to focus on linear spectral statistics as a class of prototypes for developing a new bootstrap in high dimensions, a method we refer to as the spectral bootstrap. In essence, the proposed method originates from the parametric bootstrap and is motivated by the fact that in high dimensions it is difficult to obtain a nonparametric approximation to the full data-generating distribution. From a practical standpoint, the method is easy to use and allows the user to circumvent the difficulties of complex asymptotic formulas for linear spectral statistics. In addition to proving the consistency of the proposed method, we present encouraging empirical results in a variety of settings. Lastly, and perhaps most interestingly, we show through simulations that the method can be applied successfully to statistics outside the class of linear spectral statistics, such as the largest sample eigenvalue and others.

Suggested Citation

  • Miles E Lopes & Andrew Blandino & Alexander Aue, 2019. "Bootstrapping spectral statistics in high dimensions," Biometrika, Biometrika Trust, vol. 106(4), pages 781-801.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:781-801.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asz040
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexander Giessing & Jianqing Fan, 2020. "Bootstrapping $\ell_p$-Statistics in High Dimensions," Papers 2006.13099, arXiv.org, revised Aug 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:4:p:781-801.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.