IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i2p495-500..html
   My bibliography  Save this article

Hierarchical Bayes versus empirical Bayes density predictors under general divergence loss

Author

Listed:
  • M Ghosh
  • T Kubokawa

Abstract

SummaryConsider the problem of finding a predictive density of a new observation drawn independently of observations sampled from a multivariate normal distribution with the same unknown mean vector and the same known variance under general divergence loss. In this paper, we consider two kinds of prior distribution for the mean vector: one is a multivariate normal distribution with mean based on unknown regression coefficients, and the other further assumes that the regression coefficients have uniform prior distributions. The two kinds of prior distribution provide, respectively, the empirical Bayes and hierarchical Bayes predictive distributions. Both predictive distributions have the same mean, but they have different covariance matrices, with the hierarchical Bayes predictive distribution having a larger covariance matrix. We compare the two Bayesian predictive densities in terms of their frequentist risks under the general divergence loss and show that the hierarchical Bayes predictive density has a uniformly smaller risk than the empirical Bayes predictive density. As an offshoot of our result, we show that best linear unbiased predictors in mixed linear models, optimal under normality and squared error loss, maintain their optimality under the general divergence loss.

Suggested Citation

  • M Ghosh & T Kubokawa, 2019. "Hierarchical Bayes versus empirical Bayes density predictors under general divergence loss," Biometrika, Biometrika Trust, vol. 106(2), pages 495-500.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:2:p:495-500.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy073
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:2:p:495-500.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.