IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i2p251-266..html
   My bibliography  Save this article

The debiased Whittle likelihood

Author

Listed:
  • Adam M Sykulski
  • Sofia C Olhede
  • Arthur P Guillaumin
  • Jonathan M Lilly
  • Jeffrey J Early

Abstract

SummaryThe Whittle likelihood is a widely used and computationally efficient pseudolikelihood. However, it is known to produce biased parameter estimates with finite sample sizes for large classes of models. We propose a method for debiasing Whittle estimates for second-order stationary stochastic processes. The debiased Whittle likelihood can be computed in the same ${O}(n\log n)$ operations as the standard Whittle approach. We demonstrate the superior performance of our method in simulation studies and in application to a large-scale oceanographic dataset, where in both cases the debiased approach reduces bias by up to two orders of magnitude, achieving estimates that are close to those of the exact maximum likelihood, at a fraction of the computational cost. We prove that the method yields estimates that are consistent at an optimal convergence rate of $n^{-1/2}$ for Gaussian processes and for certain classes of non-Gaussian or nonlinear processes. This is established under weaker assumptions than in the standard theory, and in particular the power spectral density is not required to be continuous in frequency. We describe how the method can be readily combined with standard methods of bias reduction, such as tapering and differencing, to further reduce bias in parameter estimates.

Suggested Citation

  • Adam M Sykulski & Sofia C Olhede & Arthur P Guillaumin & Jonathan M Lilly & Jeffrey J Early, 2019. "The debiased Whittle likelihood," Biometrika, Biometrika Trust, vol. 106(2), pages 251-266.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:2:p:251-266.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy071
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gaël Kermarrec, 2020. "On Estimating the Hurst Parameter from Least-Squares Residuals. Case Study: Correlated Terrestrial Laser Scanner Range Noise," Mathematics, MDPI, vol. 8(5), pages 1-23, April.
    2. Girard, Didier A., 2020. "Asymptotic near-efficiency of the “Gibbs-energy (GE) and empirical-variance” estimating functions for fitting Matérn models - II: Accounting for measurement errors via “conditional GE mean”," Statistics & Probability Letters, Elsevier, vol. 162(C).
    3. Xiaofei Xu & Yan Liu & Masanobu Taniguchi, 2023. "Higher‐order asymptotics of minimax estimators for time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 247-257, March.
    4. J -P Kreiss & E Paparoditis, 2023. "Bootstrapping Whittle estimators," Biometrika, Biometrika Trust, vol. 110(2), pages 499-518.
    5. Arthur P. Guillaumin & Adam M. Sykulski & Sofia C. Olhede & Frederik J. Simons, 2022. "The Debiased Spatial Whittle likelihood," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1526-1557, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:2:p:251-266.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.