IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i1p211-227..html
   My bibliography  Save this article

Goodness-of-fit tests for the cure rate in a mixture cure model

Author

Listed:
  • U U Müller
  • I Van Keilegom

Abstract

SUMMARY We consider models for time-to-event data that allow that an event, e.g., a relapse of a disease, never occurs for a certain percentage $p$ of the population, called the cure rate. We suppose that these data are subject to random right censoring and we model the data using a mixture cure model, in which the survival function of the uncured subjects is left unspecified. The aim is to test whether the cure rate $p$, as a function of the covariates, satisfies a certain parametric model. To do so, we propose a test statistic that is inspired by a goodness-of-fit test for a regression function due to Härdle & Mammen (1993). We show that the statistic is asymptotically normally distributed under the null hypothesis, that the model is correctly specified, and under local alternatives. A bootstrap procedure is proposed to implement the test. The good performance of the approach is confirmed with simulations. For illustration we apply the test to data on the times between first and second births.

Suggested Citation

  • U U Müller & I Van Keilegom, 2019. "Goodness-of-fit tests for the cure rate in a mixture cure model," Biometrika, Biometrika Trust, vol. 106(1), pages 211-227.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:211-227.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy058
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Han & Xiaoguang Wang, 2023. "Comments on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 496-498, June.
    2. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Rejoinder on: Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 513-520, June.
    3. Ana López-Cheda & Yingwei Peng & María Amalia Jácome, 2023. "Nonparametric estimation in mixture cure models with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 467-495, June.
    4. Ana Ezquerro & Brais Cancela & Ana López-Cheda, 2023. "On the Reliability of Machine Learning Models for Survival Analysis When Cure Is a Possibility," Mathematics, MDPI, vol. 11(19), pages 1-21, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:211-227.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.