IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v106y2019i1p145-160..html
   My bibliography  Save this article

Recovering covariance from functional fragments

Author

Listed:
  • M-H Descary
  • V M Panaretos

Abstract

SUMMARY We consider nonparametric estimation of a covariance function on the unit square, given a sample of discretely observed fragments of functional data. When each sample path is observed only on a subinterval of length $\delta<1$, one has no statistical information on the unknown covariance outside a $\delta$-band around the diagonal. The problem seems unidentifiable without parametric assumptions, but we show that nonparametric estimation is feasible under suitable smoothness and rank conditions on the unknown covariance. This remains true even when the observations are discrete, and we give precise deterministic conditions on how fine the observation grid needs to be relative to the rank and fragment length for identifiability to hold true. We show that our conditions translate the estimation problem to a low-rank matrix completion problem, construct a nonparametric estimator in this vein, and study its asymptotic properties. We illustrate the numerical performance of our method on real and simulated data.

Suggested Citation

  • M-H Descary & V M Panaretos, 2019. "Recovering covariance from functional fragments," Biometrika, Biometrika Trust, vol. 106(1), pages 145-160.
  • Handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:145-160.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy055
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kraus, David, 2019. "Inferential procedures for partially observed functional data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 583-603.
    2. Yao, Binhong & Li, Peixing, 2023. "Covariance estimation error of incomplete functional data under RKHS framework," Applied Mathematics and Computation, Elsevier, vol. 443(C).
    3. Kraus, David & Stefanucci, Marco, 2020. "Ridge reconstruction of partially observed functional data is asymptotically optimal," Statistics & Probability Letters, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:106:y:2019:i:1:p:145-160.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.