IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i4p963-977..html
   My bibliography  Save this article

Constructing dynamic treatment regimes over indefinite time horizons

Author

Listed:
  • Ashkan Ertefaie
  • Robert L Strawderman

Abstract

SUMMARYExisting methods for estimating optimal dynamic treatment regimes are limited to cases where a utility function is optimized over a fixed time period. We develop an estimation procedure for the optimal dynamic treatment regime over an indefinite time period and derive associated large-sample results. The proposed method can be used to estimate the optimal dynamic treatment regime in chronic disease settings. We illustrate this by simulating a dataset corresponding to a cohort of patients with diabetes that mimics the third wave of the National Health and Nutrition Examination Survey, and examining the performance of the proposed method in controlling the level of haemoglobin A1c.

Suggested Citation

  • Ashkan Ertefaie & Robert L Strawderman, 2018. "Constructing dynamic treatment regimes over indefinite time horizons," Biometrika, Biometrika Trust, vol. 105(4), pages 963-977.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:963-977.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy043
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Chengchun & Luo, Shikai & Le, Yuan & Zhu, Hongtu & Song, Rui, 2022. "Statistically efficient advantage learning for offline reinforcement learning in infinite horizons," LSE Research Online Documents on Economics 115598, London School of Economics and Political Science, LSE Library.
    2. Shi, Chengchun & Zhang, Shengxing & Lu, Wenbin & Song, Rui, 2022. "Statistical inference of the value function for reinforcement learning in infinite-horizon settings," LSE Research Online Documents on Economics 110882, London School of Economics and Political Science, LSE Library.
    3. Pan Zhao & Yifan Cui, 2023. "A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning," Papers 2310.09545, arXiv.org.
    4. Zhen Li & Jie Chen & Eric Laber & Fang Liu & Richard Baumgartner, 2023. "Optimal Treatment Regimes: A Review and Empirical Comparison," International Statistical Review, International Statistical Institute, vol. 91(3), pages 427-463, December.
    5. Chengchun Shi & Sheng Zhang & Wenbin Lu & Rui Song, 2022. "Statistical inference of the value function for reinforcement learning in infiniteā€horizon settings," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 765-793, July.
    6. Kim Kwangho & Kennedy Edward H. & Naimi Ashley I., 2021. "Incremental intervention effects in studies with dropout and many timepoints#," Journal of Causal Inference, De Gruyter, vol. 9(1), pages 302-344, January.
    7. Gao, Yuhe & Shi, Chengchun & Song, Rui, 2023. "Deep spectral Q-learning with application to mobile health," LSE Research Online Documents on Economics 119445, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:963-977.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.