IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i4p945-962..html
   My bibliography  Save this article

Functional prediction through averaging estimated functional linear regression models

Author

Listed:
  • Xinyu Zhang
  • Jeng-Min Chiou
  • Yanyuan Ma

Abstract

SummaryPrediction is often the primary goal of data analysis. In this work, we propose a novel model averaging approach to the prediction of a functional response variable. We develop a crossvalidation model averaging estimator based on functional linear regression models in which the response and the covariate are both treated as random functions. We show that the weights chosen by the method are asymptotically optimal in the sense that the squared error loss of the predicted function is as small as that of the infeasible best possible averaged function. When the true regression relationship belongs to the set of candidate functional linear regression models, the averaged estimator converges to the true model and can estimate the regression parameter functions at the same rate as under the true model. Monte Carlo studies and a data example indicate that in most cases the approach performs better than model selection.

Suggested Citation

  • Xinyu Zhang & Jeng-Min Chiou & Yanyuan Ma, 2018. "Functional prediction through averaging estimated functional linear regression models," Biometrika, Biometrika Trust, vol. 105(4), pages 945-962.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:945-962.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy041
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven F. Lehrer & Tian Xie, 2022. "The Bigger Picture: Combining Econometrics with Analytics Improves Forecasts of Movie Success," Management Science, INFORMS, vol. 68(1), pages 189-210, January.
    2. Guozhi Hu & Weihu Cheng & Jie Zeng, 2023. "Optimal Model Averaging for Semiparametric Partially Linear Models with Censored Data," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    3. Haili Zhang & Guohua Zou, 2020. "Cross-Validation Model Averaging for Generalized Functional Linear Model," Econometrics, MDPI, vol. 8(1), pages 1-35, February.
    4. Rongjie Jiang & Liming Wang & Yang Bai, 2021. "Optimal model averaging estimator for semi-functional partially linear models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 167-194, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:4:p:945-962.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.