IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v105y2018i2p403-418..html
   My bibliography  Save this article

Semiparametric regression analysis for composite endpoints subject to componentwise censoring

Author

Listed:
  • Guoqing Diao
  • Donglin Zeng
  • Chunlei Ke
  • Haijun Ma
  • Qi Jiang
  • Joseph G Ibrahim

Abstract

SUMMARYComposite endpoints with censored data are commonly used as study outcomes in clinical trials. For example, progression-free survival is a widely used composite endpoint, with disease progression and death as the two components. Progression-free survival time is often defined as the time from randomization to the earlier occurrence of disease progression or death from any cause. The censoring times of the two components could be different for patients not experiencing the endpoint event. Conventional approaches, such as taking the minimum of the censoring times of the two components as the censoring time for progression-free survival time, may suffer from efficiency loss and could produce biased estimates of the treatment effect. We propose a new likelihood-based approach that decomposes the endpoints and models both the progression-free survival time and the time from disease progression to death. The censoring times for different components are distinguished. The approach makes full use of available information and provides a direct and improved estimate of the treatment effect on progression-free survival time. Simulations demonstrate that the proposed method outperforms several other approaches and is robust against various model misspecifications. An application to a prostate cancer clinical trial is provided.

Suggested Citation

  • Guoqing Diao & Donglin Zeng & Chunlei Ke & Haijun Ma & Qi Jiang & Joseph G Ibrahim, 2018. "Semiparametric regression analysis for composite endpoints subject to componentwise censoring," Biometrika, Biometrika Trust, vol. 105(2), pages 403-418.
  • Handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:403-418.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asy013
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anne Eaton & Yifei Sun & James Neaton & Xianghua Luo, 2022. "Nonparametric estimation in an illness‐death model with component‐wise censoring," Biometrics, The International Biometric Society, vol. 78(3), pages 1168-1180, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:105:y:2018:i:2:p:403-418.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.