IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i4p987-994..html
   My bibliography  Save this article

Dependent generalized functional linear models

Author

Listed:
  • S Jadhav
  • H L Koul
  • Q Lu

Abstract

SummaryThis paper considers testing for no effect of functional covariates on response variables in multivariate regression. We use generalized estimating equations to determine the underlying parameters and establish their joint asymptotic normality. This is then used to test the significance of the effect of predictors on the vector of response variables. Simulations demonstrate the importance of considering existing correlation structures in the data. To explore the effect of treating genetic data as a function, we perform a simulation study using gene sequencing data and find that the performance of our test is comparable to that of another popular method used in sequencing studies. We present simulations to explore the behaviour of our test under varying sample size, cluster size and dimension of the parameter to be estimated, and an application where we are able to confirm known associations between nicotine dependence and neuronal nicotinic acetylcholine receptor subunit genes.

Suggested Citation

  • S Jadhav & H L Koul & Q Lu, 2017. "Dependent generalized functional linear models," Biometrika, Biometrika Trust, vol. 104(4), pages 987-994.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:4:p:987-994.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asx044
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jadhav, Sneha & Ma, Shuangge, 2021. "An association test for functional data based on Kendall’s Tau," Journal of Multivariate Analysis, Elsevier, vol. 184(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:4:p:987-994.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.