IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v104y2017i1p141-152..html
   My bibliography  Save this article

Density estimation in the two-sample problem with likelihood ratio ordering

Author

Listed:
  • Tao Yu
  • Pengfei Li
  • Jing Qin

Abstract

SUMMARY In this paper, we propose a method for estimating the probability density functions in a two-sample problem where the ratio of the densities is monotone. This problem has been widely identified in the literature, but effective solution methods, in which the estimates should be probability densities and the corresponding density ratio should inherit monotonicity, are unavailable. If these conditions are not satisfied, the applications of the resultant density estimates might be limited. We propose estimates for which the ratio inherits the monotonicity property, and we explore their theoretical properties. One implication is that the corresponding receiver operating characteristic curve estimate is concave. Through numerical studies, we observe that both the density estimates and the receiver operating characteristic curve estimate from our method outperform those resulting directly from kernel density estimates, particularly when the sample size is relatively small.

Suggested Citation

  • Tao Yu & Pengfei Li & Jing Qin, 2017. "Density estimation in the two-sample problem with likelihood ratio ordering," Biometrika, Biometrika Trust, vol. 104(1), pages 141-152.
  • Handle: RePEc:oup:biomet:v:104:y:2017:i:1:p:141-152.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asw069
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sangita Kulathinal & Isha Dewan, 2023. "Weighted U-statistics for likelihood-ratio ordering of bivariate data," Statistical Papers, Springer, vol. 64(2), pages 705-735, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:104:y:2017:i:1:p:141-152.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.