IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i2p363-376..html
   My bibliography  Save this article

Skew-normal antedependence models for skewed longitudinal data

Author

Listed:
  • Shu-Ching Chang
  • Dale L. Zimmerman

Abstract

Antedependence models, also known as transition models, have proven to be useful for longitudinal data exhibiting serial correlation, especially when the variances and/or same-lag correlations are time-varying. Statistical inference procedures associated with normal antedependence models are well-developed and have many nice properties, but they are not appropriate for longitudinal data that exhibit considerable skewness. We propose two direct extensions of normal antedependence models to skew-normal antedependence models. The first is obtained by imposing antedependence on a multivariate skew-normal distribution, and the second is a sequential autoregressive model with skew-normal innovations. For both models, necessary and sufficient conditions for $p$th-order antedependence are established, and likelihood-based estimation and testing procedures for models satisfying those conditions are developed. The procedures are applied to simulated data and to real data from a study of cattle growth.

Suggested Citation

  • Shu-Ching Chang & Dale L. Zimmerman, 2016. "Skew-normal antedependence models for skewed longitudinal data," Biometrika, Biometrika Trust, vol. 103(2), pages 363-376.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:2:p:363-376.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asw006
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:2:p:363-376.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.