IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v103y2016i1p231-236..html
   My bibliography  Save this article

Higher dimensional Clayton–Oakes models for multivariate failure time data

Author

Listed:
  • R. L. Prentice

Abstract

The Clayton–Oakes bivariate failure time model is extended to dimensions $m>2$ in a manner that allows unspecified marginal survivor functions for all dimensions less than $m$. Special cases that allow unspecified marginal survivor functions of dimension $q$ or less with $q

Suggested Citation

  • R. L. Prentice, 2016. "Higher dimensional Clayton–Oakes models for multivariate failure time data," Biometrika, Biometrika Trust, vol. 103(1), pages 231-236.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:231-236.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv057
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ross L. Prentice & Shanshan Zhao, 2018. "Nonparametric estimation of the multivariate survivor function: the multivariate Kaplan–Meier estimator," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 3-27, January.
    2. Bernard Rosner & Camden Bay & Robert J. Glynn & Gui-shuang Ying & Maureen G. Maguire & Mei-Ling Ting Lee, 2023. "Estimation and testing for clustered interval-censored bivariate survival data with application using the semi-parametric version of the Clayton–Oakes model," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(4), pages 854-887, October.
    3. Ross L. Prentice, 2022. "On the targets of inference with multivariate failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 546-559, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:1:p:231-236.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.