IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i4p951-958..html
   My bibliography  Save this article

Locally optimal designs for errors-in-variables models

Author

Listed:
  • M. Konstantinou
  • H. Dette

Abstract

We consider the construction of optimal designs for nonlinear regression models when there are measurement errors in the covariates. Corresponding approximate design theory is developed for maximum likelihood and least-squares estimation, with the latter leading to nonconcave optimization problems. Analytical characterizations of the locally D-optimal saturated designs are provided for the Michaelis–Menten, $E_{\rm max}$ and exponential regression models. Through concrete applications, we illustrate how measurement errors in the covariates affect the optimal choice of design and show that the locally D-optimal saturated designs are highly efficient for relatively small misspecifications of the parameter values.

Suggested Citation

  • M. Konstantinou & H. Dette, 2015. "Locally optimal designs for errors-in-variables models," Biometrika, Biometrika Trust, vol. 102(4), pages 951-958.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:951-958.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv048
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min-Jue Zhang & Rong-Xian Yue, 2020. "Locally D-optimal designs for heteroscedastic polynomial measurement error models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 643-656, August.
    2. Min-Jue Zhang & Rong-Xian Yue, 2021. "Optimal designs for homoscedastic functional polynomial measurement error models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 485-501, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:4:p:951-958.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.