IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v102y2015i3p695-704..html
   My bibliography  Save this article

Efficient estimation of the number of false positives in high-throughput screening

Author

Listed:
  • Holger Rootzén
  • Dmitrii Zholud

Abstract

This paper develops tail estimation methods to handle false positives in multiple testing problems where testing is done at extreme significance levels and with low degrees of freedom, and where the true null distribution may differ from the theoretical one. We show that the number of false positives, conditional on the total number of positives, has an approximately binomial distribution, and we find estimators of the distribution parameter. We also develop methods for estimation of the true null distribution, as well as techniques to compare it with the theoretical one. Analysis is based on a simple polynomial model for very small p-values. Asymptotics that motivate the model, properties of the estimators, and model-checking tools are provided. The methods are applied to two large genomic studies and an fMRI brain scan experiment.

Suggested Citation

  • Holger Rootzén & Dmitrii Zholud, 2015. "Efficient estimation of the number of false positives in high-throughput screening," Biometrika, Biometrika Trust, vol. 102(3), pages 695-704.
  • Handle: RePEc:oup:biomet:v:102:y:2015:i:3:p:695-704.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asv015
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:102:y:2015:i:3:p:695-704.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.